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SUMMARY 

If a family of distributions is of the form F[ (t/ß)01]  for 

t > 0, where F is known and a and ß are the shape and scale 

parameters respectively, the maximum likelihood estimates a,  §, 

calculated from a complete sample or an incomplete sample censored 

under certain conditions or terminated at a given order observation, 

have the property that U - a/a    and V ■ (ß/ß)a, have distributions 

which are parameter-free. Thus T ■ U £n V has a parameter-free 

distribution. Consequently, a tabulation of these distributions 

for a specific sampling situation could be used to perform the 

usual statistical tests and to construct interval estimates for the 

parameters In the same way the sample variance,  s, and "Student's" 

t-dlstribution do for the normal law. 

Moreover, it is shown that this result can be used to obtain 

confidence contours along the entire distribution function analogous 

to the Kolmogorov-Smirnov bounds on the empiric cumulative distribution. 

Taking the Welbull distribution and a sample of the first 3 order 

observations out of 5 as an example (in which case the parameter-free 

properties of U and V are not new), computational procedures are 

specified for determining the distribution of U and V by Monte 

Carlo methods using the latest random number generators. These 

computing times are given, as It is for the calculations necessary 

to compute a confidence contour along the entire distribution. Graphs 

of the distributions of U and V and the confidence contour for the 

distribution are presented for this case. 
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1.    Introduction 

In a paper by Thoman, Balne and Antle {12], It was shown that 

certain pivotal functions of the maximum likelihood estimators for 

parameters In the Weibull family have distributions which are parameter- 

free.     (This fact was also mentioned In the mathematical appendix of the 

proprietary report [2].)    By using Monte Carlo methods,  this basic 

result made possible the production of tables of the percentlle points 

of these distributions so that confidence Intervals for the parameters 

can be determined.    In turn this makes possible tests of hypotheses 

regarding the parameters, see  [11]. 

It Is the purpose of this note to generalize this result In 

several respects.    Firstly,  to point out that for any given continuous 

distribution with support on the positive line and unknown shape and 

scale parameters the same pivotal functions of the maximum likelihood 

estimators are parameter-free.    Secondly, that the same conclusion 

holds for Incomplete samples censored under certain conditions or termin- 

ated at a given ordered observation.    Moreover In these cases It is 

possible to obtain confidence contours along the entire distribution 

function not Just of tail probabilities as given in [6].    These con- 

tours are not defective near the tails as are the Kolmogorov-Smirnov 

bounds and by being more specific are narrower. 
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2.    The Model and the Estimates 

Let    R   denote a given survival distribution (unity minus the 

distribution) with support on the positive real line.    We assume the 

density    € - -R'     exists and is dlfferentlable and we denote the 

hazard rate by    q - f/R.    We now make the assumption 

1°:    The  observable random variable    X   has an unknown 

survival distribution   H   within the two parameter 

family defined for given    R    by 

H(x) - P[X > x] - RUx/ß)01]      for    x > 0, 

where    a > 0    Is the shape parameter and    ß > 0 

Is the scale parameter, often called the characteristic 

life. 

Alternatively, we could formulate a model with unknown scale 

and location parameters and a fixed distribution by considering HnX 

as an observable varlate. Thus there Is an obvious analogue for every- 

thing which follows within that formulation. 

We shall now Introduce a sampling situation which often arises 

In life testing, namely we observe either the time at which failure 

takes place or the time at which the life test Is terminated with the 

component unfailed and we know which of these events occurred. For 

example. In fatigue life testing we are told the total time the 

specimen has been fatigued and whether or not It has broken. There 

are similar situations In clinical trials in medicine. 
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Let    X   denote the life length and    Z    the random time at which 

the test Is terminated for any other reason than failure.    Suppose we 

observe the random couple    mln(X,Z),    £X < Z^   where    CA3    Is the Indi- 

cator of  the event    A,    taking the value one or zero,  and    min(X,Z)    Is 

the time the test was operating. 

Let    X     for    1 - l,...,n    be mutually Independent and Identically 

distributed life length random variables with distribution   F,    density 

F'     and survival distribution    F.    Let    Z      for    1 - l,...,n    be a set 

of non-negative censoring random variables which may be dependent upon 

the    X's. 

Let    Yi - mln(Xi,Z1),    ^ - ^ < Z^   for    1 - l,...,n   and call 

the random set of Indices of failed Items 

{1 - 1,....n:!. - 0}  . 

We now make assumption 

2*t (Z.,...,Z ) are Independent, for given A - X of 
1    n 

{X. :1 i X} on the event ^WX. > Z. ] . 
1 lix  i   1 

This assumption means that If a given value of (x. x ) should 

result In a set of (z, z )  then for any 1 such that x. > z. 

(I.e., jeX) any larger observed value of x. would have resulted In 

the same set of (z,,...,z ) In distribution. Thus for each censored 
1'    n 

test the component being even longer lived would not alter the result 

any. 

Lemma: If 2° holds the density of O^»1^) ^or 1 ■ lf»»n Is 

proportional to 
1 

I 
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(2.1)     TT F'(y.) TT F(y ) 
ieX    x jix   :I 

where the constant of proportionality depends upon the failure observations 

{y.:leX} but not upon F. 

Proof: Consider the event 

[Y, - y. ,..,,¥ - y , 1. - ...» I. - 1, I. .,-...- I - 0] 1  'l'  * n  'n*  1       k      k+1       n 

or equivalently 

k n 
(2.2) r^  [X, < Z  ][X    - x.]    r^    [X.  > Z.][Z.  - z.] 

1-1      ^^       1      1        l    1-k+l      iiii 

Let g denote the joint density of Z.,...,Z  given X.,...,X 
n 

assuming Z.,...,Z  Independent of X. .,...>X  on S~\    [X. > Z ]. 
x      n K^rx     xi      • « ■ *   x    x l»k+l 

The likelihood of the event specified in (2.2) is 

00 00 

TT   F'CXj)    TT    F^j)    I    •••   I   8^! zJ*l Xk)dzl •••  dzk• 
J"k+1     \ Xl 

Except for the altered notation in (2.1) this is the result. | 

Consider the special case when the Z.'s are Independent of the 

X 's. This would Include censoring at a specific time determined by 

either chance or design. The case when the Z.'s are functionally 

dependent on the X's would Include the case of censoring at a given 

failure. Clearly 2° is true in the case of Z.'s Independent of X 's. 

To check that 2° is true in the case Z. - X,.. 1 - 1,...,^ the k 

ordered observation, we examine the joint density of X... , X. .,...,X 

on the event X(k) < X1 for 1 - k+1,...,n. It is 



k(k)F'   ^(k)^     H,   ^(x^       x(k)<x1      i-k + l , 
i-k+1 

Note this Is the condition specified. 

From (1.1) we see the density of    X   is 

(2.3) f(xa/8a)otxa"Va     for    x > 0  . 

Following the notation Introduced In the lemma we let    (y.,... ,y. ) 

denote the set of observations of failed Items,  I.e., observations of 

X   and    (yk+i »•• «»y )    denote the set of censored tests, i.e., 

observations of    Z. 

From (2.1),  setting    Ff(x)    equal to  (2.3), we may write the 

log-likelihood as 

k n 
L -  E   UnftyJ/fS01) + £n(a/3) + (a-1) Jln(y./ß) ] +    J]     )lnR(yJ/ßa) 

1-1 1-k+l 

Hence 

1-1 1-1 

where In general 

*i k^x)  " q^x)  ~ fi ^ ^ql(x)/q(x)      i,k - 1 n. 

and similarly 

- ^ * f £ <v"V^/B») . jL ka  .   a 
33 

Thus the joint maximum likelihood estimators    a, ß    are the 

simultaneous solutions  to the equatiors 

<2-4)      t&ilf *u*l(yi'bi] 
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Note that If we assume a Welbull model, then    q(x)  - 1    for 

x > 0    and we have for all    l,k » l,...,n 

(2.6) \l>± k(x)  - 1      for all    x > 0 . 

Naturally enough this results in considerable simplification. In 

particular (2.4) can be explicitly solved for ß. 

For the log-normal model, namely 

where 91 is the standard normal distribution, we find 

1 + Änx 

(2.7)    ^^W 
i £ k 

x 

q(x)       i > k . 

Substituting (2.6) and (2.7) into the equations (2.4) and (2.5) we 

find they reduce to those given by Cohen in [4] for the Weibull and 

log-normal cases, respectively. 

Another case is an extreme value distribution with q(x) ■ e  for 

x > 0.  Here we have 

Vk(x) " 
ex i > k 

ex - 1      i i k . 

This also results in some simplification in (2.4) and (2.5). 

Let W have survival distribution R and for i ■ l,...,n set 

(2.8)    w, - (y./ß)a    u - i/o    v - (ß/ß)a 
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Thus we see for 1 - l,...,n 

(y^ß)" - (w^v)",    (yirß)a  - w1/v 

and simplifying (2.4) and (2.5) we obtain two equations In (u,v): 

(2.9) 

£ t h^uW ' k  E ^i -1 

where 

^1 * ^wi/v^        i " i»"-»0 • 

It follows from (2.8)  that    W1,...,W      are distributed Independently 

of    a    and    ß.    We shall assume 

3°    (W.   .,...,W )    have a known distribution independent 

of    a    and    ß   where   k    is the given number of failed 

(uncensored)  items. 

In the case of random sampling for a fixed time, it 1s clear 

that 2° would not be satisfied; on the other hand, it is clear that 

sampling until a fixed number of failures would satisfy it.    There are 

other situations which arise in practice for which 2° holds.    For example, 

in certain fatigue  tests of structural details,  failure takes place other 

than within the area of primary concern.     Such fatigue may be un- 

representative of service if it is caused by the abnormalities of 

local stress induced from clamping the detail in the fatigue machine. 

The assumption is made that the shape parameters of the two distributions 

.^.-c mmaiUTirrri >.>***'■******■** 
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of fatigue at the different areas are the same while the scale 

parameters  (characteristic lives) have a known ratio determined 

from the maximum deflection and the gross area stresses. 

There follows immediately from equations  (2.9)  the 

Theorem: If 1°, 2° and 3° hold, then the random variables 

U - a/a , V - (g/e)01 have a joint distribution 

Independent of    a    and    3. 

Also we have the 

Corollary:    If 1°, 2° and 3° hold then the random variable 

T - lUnV - a Unfi - Änß)    has a distribution 

Independent of    a    and    ß. 

The preceding theorem Is a generalization of the results given 

in [12]  for the Weibull distribution.     It was not known when the 

survey article  [7] was written although it may have been suspected 

from sampling results for this case, see the references In [7].    In 

[12]  the percentiles of the marginal distributions of    U    and    V   are 

tabulated only for complete samples,  for obvious reasons.     It is 

mentioned there that the parameter-free property of the pivotal 

functions holds when the observations are censored at the k      failure. 

Obviously, if we have a log-normal distribution so that  (2.7) 

holds we obtain the theorems concerning the log-normal model.    These 

can be related to results about the t-dlstribution through an exponential 

transformation.    Thus the corollary above says essentially that "Student's" 

result  [10]  about exact inference can be extended to any two-dimensional 

family known except for scale and location parameters when using the 
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maximum likelihood estimates. 

The importance of the preceding results is that it establishes 

the usefulness of the maximum likelihood estimators, whose optimum 

properties are well known, under a wide category of censoring and 

truncation of the data.    Further it gives conditions under which the 

pivotal functions of the maximum likelihood estimators are parameter» 

free and thus it is possible, by varying    R,    to perform studies of 

the robustness of these estimators. 

If in a given instance one wishes to determine a joint con- 

fidence region in both parameters, or in one parameter separately with 

the other unknown  (or the corresponding tests)  then ve need to calculate 

the required percentlle points of the distribution which can be done 

using some acceptable Monte Carlo procedure.    This has already been 

accomplished for certain cases for the Weibull distribution in [11]. 
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3.    Confidence Contours on the Distribution 

Although the need of calculating confidence contours along the 

entire distribution function arises often in reliability practice 

there are but a few methods of doing so. 

Let   H   be an estimate of the survival distribution   HcX. 

Previously in [9], we have called   If   ample    for    H    iff    HH* (p) 

for each    pc(0,l)    has a distribution independent of    Hcdf.    (Here 

and in what follows juxtaposition of functions indicates composition.) 

For such estimators the analogue of the Kolmogorov-Smimov statistic 

D   - ^i sup  |H(x) - H(x)| - ^ sup  |lffl~1(p) - p| 
x p 

and the Cramlr-von Mises statistic 

i 
# - -n    f|H - H|2dH ■ n     j   |l&"1(p) - p|2dp 

0 

are distribution-free with respect to 31.    For the model presented 

in §2 we obtain 

(3.1) HH'1(p) - R{[VR"1(p)lU}        for    0 < p < 1 . 

The Importance of the probability integral transform to obtain 

estimates which are parameter-free is evident and is not new; for 

example, it was studied in [5].    Thus we see   H(x) ■ R[(x/B)  ]    is 

ample for any two parameter family with   R   specified, since clearly 

the distribution of the quantity    HH~ (p)    for each    p<(0tl)    does not 

depend upon the parameters    a,6. 

It is possible to obtain the distribution of    D    by simulation 

and if  tables of the percentage points were provided they could be 
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used to determine confidence contours similar to the well-known 

Kolmogorov-Smirnov bounds, e.g., see [3]. However, we do not favor 

such bounds because of their very bad behavior in the tails of the 

distribution. This is usually the region where we are most interested 

In good behavior. Instead we turn to another method. 

Suppose that there exists for each e<(0,l) a continuous 

monotone increasing function, say A , mapping (0,1) onto (0,1) 

(3.5)   c - P[T < lnf(n€(x) - xü)] . 
x 

such that 

(3.2) ?[k'1n > H] - PEHH-1 > A 1  - e 

where an inequality between functions indicates the inequality holds 
I 

for their functional values at all points in their common domain. 

From (3.2) an upper confidence contour of level    e    for    H    then 

would be    AH.    At a later time we mention the alterations necessary 

to obtain either lower or two-sided confidence contours. 

If we substitute (3.1)  into (3.2) and apply   R~ ,    which is an 

order-reversing transformation, then take logarithms we obtain 

(3.3) P[T + U £nR"1(p) 5 tnR^A^p)      for all   p€(0,l)] - c . 

If we set 

(3.4) ne(x)  - ÄnR"1AeR(eX) 

and make the change of variable   x ■ £nR~  (p)    in (3.3) 

we obtain 
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We now define a functional on the extended real line for any 

real valued function n and any u > 0 by 

(3.6) u (u) -  inf  [n(x) - xu] . 
—oo<x<oo 

The question is, can we find a function n  for which u (U) 

exists finitely with probability one and satisfies equation (3.5), 

to wit, 

(3.7) e - P[T £ a) (U)] . 
e 

If so. It would be theoretically possible to obtain an upper 

confidence contour along the entire distribution H from knowledge 

of the Joint distribution of U and T. We now seek conditions which 

help with the determination of n . 

Let G   be the set of Increasing convex functions mapping the real 

line onto Itself each of which has a continuous derivative with the 

positive real line as Its range. A proof Is easily given for the 

Remark: If n«<? then u (U) exists and Is a random variable 
n 

given by 

(3.8) a)n(U)  - n[(n,)"1(U)] - W)"^)   . 

Note that If    4x6   then   n«ß where 

(3.9) n(x) - <Kx/b) +a      for   -oo<x<«' 

for any real    a    and    b > 0    and 

(3.10)        u (u) - a + a), (bu)      for    u > 0. 
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It is clear that by proper choice of a,b the right hand 

side of (3.10) can be determined for given <M(? so that (3.7) is 

satisfied, in theory, for each e in the unit interval. 

From the definition of n in terms of A  in (3.4) we find, 

setting Ä.~1(x) - ex 

(3.11) A - Rjf1!! AR"1 . 

Thus the upper confidence contour of level c is 

(3.12) A"1H(t) - Ri'V^Kt/e)]  for t > 0. 
e e 

In the preceding discussion an arbitrary choice of ^ was 

made as an illustration of the feasibility of the computation which 

must be done. Of course a better choice of the parameterization could 

be made by considering the power for the test corresponding to the 

confidence contour for a specified alternative. It is possible that 

tests of an optimal nature could be constructed in certain Instances 

against certain alternatives. 
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4. Lower and Two-Sided Confidence Contours 

If we are concerned with obtaining lower confidence contours for 

H we would seek an appropriate monotone Increasing function, say B . 

for c near unity, mapping (0,1) onto (0,1) such that 

P[H < B H] - PtB-1!! < H] - e. 

Proceeding as before and making the same change of variable we 

obtain.  In analogy with (3.5), an expression equivalent with the 

above, namely 

(4.1) P[T > sup(v*(x) - xü)] - e 
E 

X 

where 

(4.2) v*(x) - InlT1* R(ex)    for   -» < x < « . 

Define for any    u > 0    and any function    v    for which It exists 

(4.3) Pv(u) " •uplv(x) - xu]. 
x 

If we set 

(4.4) v*(x) ■ -v(-x)      for    -» < x < ■> 

we see 

(4.5) pv
#(u) - -lnf[v(x) - ^u] - -u)v(u)   . 

x 

Thus If    \)*e   then   v'    Is a monotone Increasing concave function 

mapping the real line onto itself with a continuous derivative having 

the positive real line as its range.    We label this set of functions   <?'. 
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As a consequence of (4.5) we may relate some of our previous results 

to this case. For Instance fix (j> and net? as before In (3.18) then 

(4.6)    (n#)"1(y) - -rT^-y) - - IxT^a-y) 

and n'«<?f. 

If we determine for a prescribed <J> a pair (a,b) which by 

(3.9) defines an upper confidence contour of level e, near zero, 

as given In (3.7) in terms of n then by the use of the trans- 

formation (4.4) and the identity (4.5) we obtain 

(4.7)    P(T > a (U)] - P[-T > p #(U)] - 1 - e. 
- n n 

Comparing (4.1), we see,  in those situations where    T   has a 

distribution symmetric about zero  (e.g., when we have complete samples 

and the underlying survival distribution   H    possesses the requisite 

symmetry)  that   n'    as given in  (4.6) determines a lower confidence 

contour of level    1 - e    which is near unity. 

In the more usual case where we do not have    -T   with the same 

distribution as   T    a determination must be made of the appropriate 

(a,b)  in  (4.6) In order to satisfy (4.1).    A discussion of the 

feasibility of this we defer until later. 

To obtain both upper and lower confidence contours for   H 

simultaneously we seek    A    and    B   both monotone increasing functions 

mapping the unit Interval onto itself such that 

E - P[BH i H i AH]  - PtA'1!! > H > B"^]   . 

From the first equality above, we obtain as before 



16 

c - P[ZR"1B(p) < T + lUR*^p,  for all pc(0,l)] 

(4.8) - P(pv
#(v) s Ti (ün(v)] 

where \i'*e*  is defined in terms of B by (4.2), n<0 Is defined 

In terms of A by (3.11) and p,u) were defined respectively by 

(4.3) and (3.6). 

From (4.4) we seek both v,neC for which 

(4.9) e - P[-a)v(U) < T < ^(U)] . 

The determination of an appropriate v and n In (4.9), or the 

corresponding n In (3.7) or v* In (4.1) can be done rather 

straightforwardly If we fix $•(? and choose the appropriate values 

of the parameters (a,b) across a two dimensional subspace of 6   as 

defined in (3.9). 

If we do so In the two sided case we have from (3.10) 

e - P[-w.(b'ü) - a# < T i a + uA(bü)l 

with the obvious use of notation.    If we exercise two degrees of freedom 

and set    b' - b,    a' ■ a   we obtain 

(4.10) t - P[|T|  < a + u (bU)l 

from which the proper choice of the parameters may be more easily made. 

A method of choosing the appropriate parameters a,b we take up next. 
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5.    Monte Carlo Techniques 

This discussion Is to make the point that with the latest 

random number generators available and the computing capability 

currently extant,  the distribution of the relevant statistics from 

U,V   can in practice be determined by simulation with as much precision 

and speed as could be done in many instances using numerical calculation 

were the distributions available in closed form.    Moreover, the vide 

variety of sampling situations which can arise in practice makes it 

virtually impossible to provide tables of more than limited usefulness 

for even one specific choice of   R. 

We now outline a method for the determination of either a con- 

fidence interval on    a   with    fJ   unknown  (or    6   with   a   unknown or 

both) or confidence contours along the entire distribution (or on one 

side only) for the Weibull failure model when a given number of ordered 

observations have been obtained.    The general procedure may be Inferred 

from this particular one. 

Let   y1,...,y.     be the first ordered observations from   n 2 k 

independent machine generated exponential varlates with unit mean. 

Recall, for the Weibull model,  R(x) - e    .    Solve for   u   in the 

equation   x(u) - 0    where 

k 

*<•" - ^ -: - E ?'■", 
and 

k 
N(U) - E y? + <n-k)yi; i-i 1 K 

by using Newton-Raphson iteration procedure. 
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Now compute for    u.    determined as a solution of    X(u) - 0    the 

value 

—J 
1_ 

1 

The value    (u-.v.)    Is one observation of    (U,V).    This process 

can be repeated   m   times from    ndependent samples of    y's    to obtain 

an independent sample of size    m    from    (U,V).    The value of   m   can 

be made sufficiently large to determine the joint distribution of   U,V 

(or the marginals) to a degree of accuracy limited by the machine pro- 

cedure that generates random numbers.    The desired percentlles of this 

empiric distribution are then tabulated, which can then be used to 

obtain confidence intervals or regions in the obvious way.    We do not 

pursue this matter farther because of the similarity with work done 

previously in [6].    But as an example we present the empirical marginal 

distributions of   U   and   V    in Figures 1 and 2, respectively, for   k ■ 3, 

n ■ 5    with   m ■ ASOO.    Time for both computations was 5.67 minutes on the 

IBM 360. 

The generated random numbers recoonended here, and used in [2], 

are of the type called composite congruentlal generators.    These second 

generation methods appear to be better, that is they satisfy more 

stringent statistical tests of randomness, than those of the simple 

congruentlal generators used previously.    In the particular method 

utilized,  three generators are mixed for the IBM 360 each of which will 

32 produce a full period of residues relatively prime to the modulus 2    . 

30 Consequently, these mixed generators will produce 2      distinct random 

numbers before repeating.    This method is presented in detail and Its 

practical advantage discussed in [8].    To obtain our exponential 

observations with unit mean we merely take the negative of the natural 

logarithm of the uniformly distributed observations generated by the 
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Figure 1.    Distribution of   U » a/a,    where    a    is the shape parameter 
of the Weibull distribution and a is the maximum likelihood 
estimate based on the first three observations failing out of 
five. 
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Figure 2. Distribution of V - (ß/ß)01, where a,ß are the shape 
and scale parameters of the Welbull distribution and 
the maximum likelihood estimate based on the first three 
observations failing out of five. 
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nixed congruentlal method. 

We now outline the construction of confidence contours for the 

Uelbull distribution by supposing    4»   was fixed and finding the 

appropriate    a,b    from the two-dimensional subset of   C   so that 

either (3.7),  (4.7) or (4.9)  is satisfied.    Recall that   T - U£nV 

and let 

r(a,b) - P[T i a + ü).(bU)] 
w 

or we might replace T by  |T| as in (4.10). 

A feasible procedure then is to take a mesh of values in the 

half plane a,b > 0 and on the basis of our sample (U. »V.,... ,U ,V ) 
*    i x    m m 

calculated from the appropriate random number generators, compute the 

relative frequencies of trie occurrence of the appropriate events. We 

tabulate 

r(vV"« E&'^VV^ 
where as before £IT3 is the Indicator of the relation n being one if 

true and zero otherwise. From the evidence of these results we may 

wish to interpolate to find more appropriate values and/or, as we 

proceed, to increase the sample size m and/or refine the mesh. 

As a test case we chose 

•Kx) 

from which 

V") 

ex - 1      for x > 0 

-Än(l-x)     for x i 0 

u - 1 - uJ,nu    if u > 1 

1 - u + Änu     if u < 1 
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A mesh, presented In Table I, for the range of values 

a - -.6(.l)-.3 and  .4(.1).8 

b - .25(.25)2.75 

with    k - 3, n - 5    and    m - 4,500   was computed on the IBM 360 in 5.09 

minutes.    (It was repeated to verify that all entries were accurate to 

two significant ügures.)    As an example the entry    a ■  .8, b - .25 

has    r(a,b) « .9484    thus 

b«,n(l + y-a) aiy<eo 

b(l - ea~y) -co < y i a 
n"1(y) 

can be used in conjunction with (3.12) to obtain an upper confidence 

contour of level .95. A graph is presented in Figure 3. 
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Table I 

V 

M-4500    N-5 K-3 

X -0.60      - ■0.5 -0.40        -0.30 0.40 0.50 0.60 0.70 0.80 

2.75 .009 .013 .018 .028 .518 .555 .578 .601 .619 

2.50 .012 .016 .021 .035 .542 .575 .601 .624 .646 

2.25 .017 .023 .031 .044 .568 .600 .626 .651 .671 

2.00 .025 .032 .041 .056 .597 .634 .659 .680 .702 

1.75 .035 .044 .054 .073 .636 .666 .694 .716 .733 

1.50 .049 .058 .070 .092 .675 .709 .729 .749 .765 

1.25 .071 .080 .094 .120 .722 .746 .772 .791 .807 

1.00 .092 .104 .124 .152 .773 .799 .817 .831 .844 

0.75 .127 .149 .160 .196 .826 .845 .858 .870 .879 

0.50 .162 .180 .208 .247 .870 .885 .896 .908 .916 

0.25 .204 .227 .260 .303 .914 .926 .935 .943 .948 
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Figure 3. Upper confidence contour of level .95 for a Weibull distribution 
with a ■ 2, B • 20 using a - 1.776, 8-21.36 calculated 
from the first three ordered observations out of five, with 
contour function $   defined by 4i(x) ■ ex - 1 for x ^ 0, 
(Kx) ■ -An(l-x) for x < 0. 
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